
Comparison of Advanced
Quadrature Techniques

William Wang
Rutgers University — Math 373 Spring 2021

Background
Numerical integration, more-or-less synonymous with quadrature, is the process of determining the area of
a particular figure or region. While there are many different techniques, numerical integration is thought
to originate from the ancient Greeks, who understood determination of the area of a figure as the process
of geometrically constructing a square having the same area, thus the name quadrature for this process1.

There are many reasons for the utilization of numerical integration techniques, but usually the reason
is one of the following:

1. A function f(x) is given or known, but it may be tedious, difficult, computationally expensive, etc. to
find an explicit antiderivative.

2. A function f(x) is given or known, but the antiderivative of f(x) itself may be impossible to written
in terms of elementary functions.

3. The area between a function f(x) and the abscissa (x-axis) may be of some interest, but the value of
f(x) is only known at particular points, possibly obtained through some sampling method.

Hence, numerical integration techniques are very useful, and may be used in various areas of mathematical
interest including, but not limited to: geometry and differential equations—as well as physics, engineering,
and even the life sciences and humanities2.

Many numerical integration techniques exist, but I will only be discussing three advanced numerical
integration techniques over two dimensions: Gaussian quadrature, Romberg’s method, and Tanh-Sinh
quadrature. I will also demonstrate the application of Gaussian quadrature and Romberg’s method to
approximate definite integrals for various given functions, but the application of these techniques will not
be discussed over 3-dimensions (cubature) and higher dimensions.

Description of the Methods
Gaussian Quadrature

Startingwith the oldest technique of the three, an n-point Gaussian quadrature rule is a numerical integration
technique which, in contrast to Newton-Cotes formulas which use values of a function at equally spaced
points, utilize points of evaluation chosen in an optimal way. Gaussian quadrature rules are stated as∫ 1

−1
f(x) dx ≈

n∑
i=1

wif(xi) (1)

where the coefficients (weights) wi and the points xi are chosen to minimize the error in (1).

To minimize the error in (1), we assume that the best choices of these values produce the exact result
for polynomials of the highest degree, that is, the choice that gives the greatest degree of precision3. We
have n coefficients and n points to choose, so in total we have 2n parameters to choose.Thus, the Gaussian
quadrature rule with the proper choices of coefficients and points will be exact for polynomials of degree
2n− 1 or less.

However, choosing the optimal parameters may be computationally expensive, and may not be feasible
when n is large. The example below will demonstrate this.

Example (Adapted from Burden, Faires. Numerical Analysis. 10E):
Suppose we want to want to determine w1, w2, x1, and x2 such that∫ 1

−1
f(x) dx ≈ c1f(x1) + c2f(x2)

gives the exact result whenever f(x) is a polynomial of degree 2(2)− 1 = 3 or less, that is, when
f(x) = a0 + a1x+ a2x

2 + a3x
3,

for some constants a0, a1, a2, and a3. First we can note that∫
f(x) dx =

∫
(a0 + a1x+ a2x

2 + a3x
3) dx = a0

∫
1 dx+ a1

∫
x dx+ a2

∫
x2 dx+ a3

∫
x3 dx

Hence, we have a system of four equations:

c1 + c2 =

∫ 1

−1
1 dx = 2

c1x1 + c2x2 =

∫ 1

−1
x dx = 0

c1x
2
1 + c2x

2
2 =

∫ 1

−1
x2 dx =

2

3

c1x
3
1 + c2x

3
2 =

∫ 1

−1
x3 dx = 0

By solving the system of equations, it turns out that c1 = c2 = 1, x1 = −
√
3
3 , and x2 =

√
3
3 . This gives the

2-point Gaussian quadrature rule ∫ 1

−1
f(x) dx ≈ f(−

√
3

3
) + f(

√
3

3
)

which is exact for all polynomials of degree 3 or less. As you can see, it may be somewhat difficult
to compute the optimal points xi and weights ci, and the computational difficulty of calculating them
increases as n increases.

There are also other types of Gaussian quadrature rules, but their performance and usagemay be constrained
to additional or different conditions.

Romberg’s Method

Next, Romberg’s method—aNewton-Cotes formula— essentially involves approximating a definite integral
on an interval [a, b] at equally spaced points by applying Richardson’s extrapolation on the Trapezoid or
Midpoint rule3. For our purposes, we will be using Richardon’s extrapolation on the Composite Trapezoidal
rule, because the error term of the Composite Trapezoidal rule on some interval [a, b] can be written as

K1h
2 +K2h

4 +K3h
6 + ...

where h is the step size and each Ki is some constant that only depends on f (2i−1)(a) and f (2i−1)(b).
Since Richardson’s extrapolation can be performed on any technique where the truncation error is of the
form

n−1∑
i=1

Kih
αi +O(h2n)

where each Ki is some constant and when α1 < ... < αn, the Composite Trapezoidal rule is a suitable
choice to perform Richardson’s extrapolation on.

To approximate the integral ∫ b
a
f(x) dx, we use the Composite Trapezoidal rule with n = 1, 2, 4, 8, ...

and denote the resulting approximations, respectively, by R1,1, R2,1, R3,1, and so on. Then, we can apply
extrapolation to obtain the approximations R2,2, R3,2, R4,2, and so on by

Rk,2 = Rk,1 +
1

3
(Rk,1 −Rk−1,1), k = 2, 3, ...

Then, we can apply extrapolation to obtain the approximations R3,3, R4,3, R5,3, and so on by

Rk,3 = Rk,2 +
1

15
(Rk,2 −Rk−1,2), k = 3, 4, ...

In general, we will iteratively apply extrapolation to get Rk,j−1 approximations, then use those results to
obtain the approximations

Rk,j = Rk,j−2 +
1

4j−1 − 1
(Rk,j−1 −Rk−1,j−1), k = j, j + 1, ...

Example (Adapted from Burden, Faires. Numerical Analysis. 10E):
Use the Composite Trapezoidal rule to find approximations to ∫ π

0
sinx dxwith n = 1, 2, 4, 8, and 16. Then

perform Romberg integration on the results.

Composite Trapezoidal Rule Approximations:

R1,1 =
π

2
[sin 0 + sinπ)] = 0

R2,1 =
π

4
[sin 0 + 2 sin

π

2
+ sinπ] =

π

2
≈ 1.5708

R3,1 =
π

8
[sin 0 + 2(sin

π

4
+ sin

π

2
+ sin

3π

4
) + sinπ] =

π

4
(1 +

√
2) ≈ 1.8961

R4,1 =
π

16
[sin 0 + 2(

7∑
i=1

sin
iπ

8
) + sinπ] ≈ 1.9742

R5,1 =
π

32
[sin 0 + 2(

15∑
i=1

sin
iπ

16
) + sinπ] ≈ 1.9936

Then, use Richardson’s extrapolation:

R2,2 = R2,1 +
1

3
(R2,1 −R1,1) ≈ 1.5708 +

1

3
(1.5708− 0) =

4

3
(1.5708) = 2.0944

R3,2 = R3,1 +
1

3
(R3,1 −R2,1) ≈ 1.8961 +

1

3
(1.8961− 1.5708) ≈ 2.0045

R4,2 = R4,1 +
1

3
(R4,1 −R3,1) ≈ 1.9742 +

1

3
(1.9742− 1.8961) ≈ 2.0002

R5,2 = R5,1 +
1

3
(R5,1 −R4,1) = 1.9936 +

1

3
(1.9936− 1.9742) ≈ 2.0000

R3,3 = R3,2 +
1

15
(R3,2 −R2,2) ≈ 2.0045 +

1

15
(2.0045− 2.0944) ≈ 1.9985

R4,3 = R4,2 +
1

15
(R4,2 −R3,2) ≈ 2.0002 +

1

15
(2.0002− 2.0045) ≈ 1.9999

R5,3 = R5,2 +
1

15
(R5,2 −R4,2) = 2.0000 +

1

15
(2.0000− 2.0002) ≈ 2.0000

R4,4 = R4,3 +
1

63
(R4,3 −R3,3) = 1.9999 +

1

63
(1.9999− 1.9985) ≈ 1.9999

R5,4 = R5,3 +
1

63
(R5,3 −R4,3) = 2.0000 +

1

63
(2.0000− 1.9999) ≈ 2.0000

R5,5 = R5,4 +
1

255
(R5,4 −R4,4) ≈ 2.0000 +

1

255
(2.0000− 1.9999) ≈ 2.0000

Table:
0

1.5708 2.0944
1.8961 2.0045 1.9985
1.9742 2.0002 1.9999 1.9999
1.9936 2.0000 2.0000 2.0000 2.0000

This particular example is also demonstrated in ex_romberg.m.

Tanh-Sinh Quadrature

Lastly, Tanh-Sinh quadrature, according to Bailey4, is "the fastest currently known high-precision quadrature
scheme, particularly when one counts for abscissas and weights". It is also known as the Double-Exponential
(DE) formula.

Essentially, it first involves a change of variables x = tanh(12 sinh(t)), where f(x) is the integrand, transforming
an integral on the interval x ∈ [−1, 1] to the interval t ∈ (−∞,∞). The quadrature rule is stated as∫ 1

−1
f(x) dx ≈

∞∑
i=−∞

wif(xi) (2)

where h is the step size, the weight wi is

wi =
1
2hπ cosh(ih)

cosh2(12π sinh(ih))
(3)

and the node xi is
xi = tanh(

1

2
π sinh(ih)) (4)

By performing this change of variables, it conveniently makes the approximation resistant to endpoint
behavior and in many cases causes the the approximation to quickly converge5.

Code Implementation
• gauss2p.m: Outputs an approximation of the area under f(x) on the interval [−1, 1] using the 2-

point Gaussian quadrature rule.
• ex_gauss2p.m: Demonstrates the 2-point Gaussian quadrature rule for the function f(x) = x2 on

the interval [−1, 1] using gauss2p.m
• romberg.m: Outputs an approximation of the area under f(x) on the interval [a, b] using Romberg’s

method (Richardson’s extrapolation on Composite Trapezoidal rule) with n = 1, 2, 4, ...

• ex_romberg.m: Demonstrates Romberg’s method for the function f(x) = sin(x) on the interval
[0, π] using romberg.m

The file main.m executes gauss2p.m and romberg.m to display the examples in the next section.

Testing and Results
I will test and compare the performance of Gaussian quadrature and Romberg’s method for various
functions, in which the absolute error of the approximation versus the actual answer will be measured.

In the error estimate portion of the MATLAB code for each example, the actual answer is represented as
integral(f, a, b), where integral is the MATLAB built in numerical integration function, f is the function,
and a and b are the left- and right-endpoints, respectively. If known, replacing integral(f, a, b) with the
actual, explicit answer may give a more realistic (better) error estimate, since the implementation details
of the integral function are not known and may not be completely accurate itself.

In the following examples, I just used

Example 1: f(x) = sinx

For the first example, I will test the performance of the numerical integration techniques in approximating
the area under f(x) = sinx on the interval [−1, 1]. The exact answer to ∫ 1

−1 sin(x) dx is 0.

2-point Gaussian quadrature rule:

The approximation of the area under f(x) = sinx on the interval [−1, 1] using the 2-point Gaussian
quadrature rule is very accurate, with approximately 16 decimal places of accuracy—Gaussian quadrature
seems to perform very well for this example!

Romberg’s Method:

The approximation of the area under f(x) = sinx on the interval [−1, 1] using Romberg’s method also
seems to be very accurate, with approximately 15 decimal places of accuracy.

For this example, the performance of the 2-point Gaussian quadrature rule seems to slightly edge out
that of Romberg’s method, with 1 additional decimal place of accuracy in the approximate error.

Example 2: f(x) = cosx

For the second example, I will test the performance of the numerical integration techniques in approximating
the area under f(x) = cosx on the interval [−1, 1]. The exact answer to ∫ 1

−1 cosx dx is sin(1)− sin(−1) ≈
1.683.

2-point Gaussian quadrature rule:

The approximation of the area under f(x) = cosx on the interval [−1, 1] using the 2-point Gaussian
quadrature rule seems to perform well for this example, giving us approximately 2 decimal places of
accuracy.

Romberg’s Method:

The approximation of the area under f(x) = cosx on the interval [−1, 1] using Romberg’s method seems
to be very accurate, with approximately 14 decimal places of accuracy!

For this example, the performance of Romberg’s method seems to be much better than that of the 2-point
Guassian quadrature rule, with 14 decimal places of accuracy compared to 2.

Example 3: f(x) = x2

For the third example, I will test the performance of the numerical integration techniques in approximating
the area under f(x) = x2 on the interval [−1, 1]. The exact answer to ∫ 1

−1 x
2 dx is 2

3 .

2-point Gaussian quadrature rule:

The 2-point Gaussian quadrature rule approximation of the area under f(x) = x3+x2+x+1 on the interval
[−1, 1] seems to be very good, providing us with about 15 decimal places of accuracy. This is consistent with
the theoretical performance described under Gaussian quadrature in the Description of the Methods—the
theoretical Gaussian quadrature rule approximation is exact—meaning for this example, the only source
of error is from MATLAB’s finite precision.

Romberg’s Method:

The approximation using Romberg’s method for the area under f(x) = x2 on the interval [−1, 1] also
seems to be very good, with 15 decimal places of accuracy.

Interestingly for this example, the approximations using Romberg’s method and the 2-point Gaussian
quadrature rule, and the approximate errors of both techniques, seems to be exactly the same.

Example 4: f(x) = x3 + x2 + x+ 1

For the third example, I will test the performance of the numerical integration techniques in approximating
the area under f(x) = x3+x2+x+1 on the interval [−1, 1]. The exact answer to ∫ 1

−1 x
3+x2+x+1 dx is 8

3 .

2-point Gaussian quadrature rule:

The 2-point Gaussian quadrature rule approximation of the area under f(x) = x3 + x2 + x + 1 on the
interval [−1, 1] seems to very good, providing us with about 15 decimal places of accuracy. Likewise as in
Example 3, the theoretical error of the 2-point Gaussian quadrature rule for this function is 0, so the only
source of error for this approximation should be from MATLAB’s finite precision.

Romberg’s Method:

The approximation using Romberg’s method for the area under f(x) = x3 + x2 + x + 1 on the interval
[−1, 1] seems to be a perfect estimate, with an approximate error of 0.

Comparing the approximate errors of 0 and 4.44089×10−16 for Romberg’s method and the 2-point Gaussian
quadrature rule respectively, Romberg’s method seems to perform better for this example, although the
2-point Gaussian quadrature rule still performs extremely well.

Discussion

Comparing the two techniques accross all four examples, it can be seen that for certain functions, the
2-point Gaussian quadrature rule may perform better than Romberg’s method, for certain functions the
opposite, and for others that the performance of the two are equal. Neither techniques are completely
accurate for all functions, but in our examples, both seemed to be very accurate.

References
[1] Numerical integration (2021). Retrieved March 28, 2021 from

https://en.wikipedia.org/wiki/Numerical_integration

[2] Numerical analysis (2021). Retrieved April 7, 2021 from
https://en.wikipedia.org/wiki/Numerical_analysis

[3] R. Burden, D. Faires, and A. Burden. Numerical Analysis 10ed. (2014).
Cengage Learning

[4] D. Bailey. Tanh-Sinh High Precision Quadrature (2006). Retrieved March 27, 2021 from
https://www.davidhbailey.com/dhbpapers/dhb-tanh-sinh.pdf

[5] Tanh-sinh quadrature (2021). Retrieved March 28, 2021 from
https://en.wikipedia.org/wiki/Tanh-sinh_quadrature

https://en.wikipedia.org/wiki/Numerical_integration
https://en.wikipedia.org/wiki/Numerical_analysis
https://www.davidhbailey.com/dhbpapers/dhb-tanh-sinh.pdf
https://en.wikipedia.org/wiki/Tanh-sinh_quadrature

